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We explore the spontaneous formation of an excitonic insulator state at the semimetal-semiconductor tran-
sition of mixed-valence materials in the framework of the spinless Falicov-Kimball model with direct f-f
electron hopping. Adapting the projector-based renormalization method, we obtain a set of renormalization
differential equations for the extended Falicov-Kimball model parameters and finally derive analytical expres-
sions for the order parameter, as well as for the renormalized c- and f-electron dispersions, momentum
distributions, and wave-vector resolved single-particle spectral functions. Our numerical results proved the
valence transition picture, related to the appearance of the excitonic insulator phase, in the case of overlapping
c and f bands. Thereby the photoemission spectra show significant differences between the weak-to-
intermediate and intermediate-to-strong Coulomb attraction regimes, indicating a BCS-Bose-Einstein transition
of the excitonic condensate.

DOI: 10.1103/PhysRevB.81.205117 PACS number�s�: 71.28.�d, 71.35.Lk, 71.30.�h

I. INTRODUCTION

The idea that an excitonic phase appears—under certain
circumstances—at the semiconductor-semimetal transition
dates back about half a century.1,2 The formation of excitons
is driven by the Coulomb attraction between conduction-
band electrons and valence-band holes. Provided a large
enough number of sufficiently long-lived excitons was cre-
ated, a subsequent spontaneous condensation of these com-
posite Bose quasiparticles may set in. The excitonic instabil-
ity is expected to happen, when semimetals with very small
band overlap or semiconductors with very small band gap
are cooled to extremely low temperatures.3,4 The excitonic
condensate typifies a macroscopic phase coherent, insulating
state, which separates the semimetal from the semiconductor
�see Fig. 1�.

Surprisingly, to date, there is no free of doubt realization
of the excitonic insulator �EI� state in nature. Nowadays
experiments report data, however, which strongly support
the theoretical predictions of the EI phase. Along this
line, experiments on coupled quantum-well structures, e.g.,
have shown unusual properties which were inferred as indi-
cations of excitonic condensation.6 Temperature-dependent
angle-resolved photoelectron spectroscopy �ARPES� on
1T-TiSe2 transition-metal dichalcogenides are in favor of
the EI scenario as driving force for the observed charge-
density-wave transition.7 X-ray photoemission �PE� spectros-
copy and ARPES on quasi-one-dimensional �1D� Ta2NiSe5

reveal that the ground state can be viewed as EI state be-
tween the Ni 3d-Se 4p hole and the Ta 5d electron.8

Further real-system candidates for the EI state are pressure-
sensitive rare-earth chalcogenides, such as mixed-valence
TmSe0.45Te0.55. For this compounds electrical and thermal
�transport� measurements indicate exciton condensation, at
temperatures below 20 K in the pressure range between
5 and 11 kbar.9

Also from the theoretical side the existence of the EI is
still controversial. Most of the early mean-field approaches
work with an effective-mass Mott-Wannier-type exciton
model and exploit the analogy to the BCS theory of
superconductivity10 �for a more recent calculation of the
phase diagram see Refs. 5 and 11�. Here the major problem
is that the excitonic phases �excitonic gas, EI� turn out to
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FIG. 1. �Color online� EI formation and BCS-BEC transition
scenario. At the semimetal-semiconductor transition the ground
state of the system may become unstable with respect to the
spontaneous formation of excitons near the point at which band
overlap occurs. Starting from a semimetal with small density of
electrons and holes �such that the Coulomb interaction is basically
unscreened�, the number of free carriers varies discontinuously un-
der an applied perturbation, signaling a phase transition �Ref. 1�.
Approaching the transition from the semiconductor side, an
anomaly occurs when the band gap, tuned, e.g., by external pres-
sure, becomes less than the exciton binding energy �Ref. 2�. De-
pending on from which side of the semimetal-semiconductor tran-
sition the EI is reached, the EI can be viewed either as BCS
condensate of loosely bound electron-hole pairs or as BEC of pre-
formed tightly bound excitons �Ref. 5�. A finite order parameter �
indicates the new distorted phase of the crystal, with coherence
between conduction- and valence-band electrons and a gap for
charge excitations.
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be unstable against a metallic electron-hole liquid.12,13 At
present, Falicov-Kimball-type models seem to be the most
promising candidates for realizing collective exciton phases.
This particularly holds for the extended Falicov-Kimball
model �EFKM�, which includes a direct f-f electron hopping
term that—having again the Tm�Se,Te� system in mind—is
certainly more realistic than entirely localized f electrons. By
means of unbiased constrained path Monte Carlo �CPMC�
simulations the EFKM has been proven to exhibit critical
excitonic correlations �an EI ground state� in case of 1D �two
dimensions �2D��.14,15 Subsequent Hartree-Fock calculations
yield the ground-state phase diagram of the 2D EFKM in
excellent agreement with the CPMC data,16 supporting the
applicability of such mean-field approaches also in the three-
dimensional �3D� situation.16,17 For the 3D EFKM, the exis-
tence of the EI phase was corroborated by more sophisticated
slave-boson approaches.18,19

Assuming that f-c electron coherence may lead to an EI
phase in the EFKM, the properties of the excitonic state
should be explored in more detail. In this regard, the anti-
cipated “BCS-Bose-Einstein condensate �BEC� crossover”
scenario,5,11,20 connecting the physics of BCS superconduc-
tivity with that of BECs, is of vital importance. Calculating
the Frenkel-type exciton propagator within a random-
phase-approximation scheme, the existence of excitonic
bound states has been established for the EFKM also
above Tc, on the semiconductor side of the semiconductor-
semimetal transition.21 No bound states were found on the
semimetallic side. Accordingly the condensation process
should differ by its nature: While “exciton” formation and
condensation simultaneously take place on the semimetallic
�BCS� side, preformed excitons will condense on the semi-
conducting �BEC�side as the temperature is lowered �cf. Fig.
1�. Looking at the EI order parameter � only, it seems diffi-
cult to examine the BCS-BEC crossover. The gap equation
for � will of course not discriminate between both regimes.
Photoemission spectroscopy, on the other hand, will directly
probe the elementary excitations and energy dispersion and
therefore provides extremely useful information about the
BCS-BEC crossover. This has been shown quite recently in
the context of ultracold �atomic� Fermi gases.22

In this work, we will follow this perspective and examine
the EI phase in terms of the EFKM particularly with regard
to a BCS-BEC crossover. To this end, we analyze the equi-
librium and spectral properties of the model at zero tempera-
ture, using the so-called projective renormalization method
�PRM�.23,24 This technique has already been successively
applied to a great variety of many-body problems.25,26 Here
we calculate and discuss the photoemission spectra of the
EFKM in order to probe the signatures of the excitonic con-
densate. The paper is organized as follows. Section II intro-
duces the EFKM. The theoretical approach is outlined in
Sec. III, where the general concept of the PRM is resumed in
Sec. III A and explicit expressions for the renormalization
differential equations, particle number expectation values,
correlation functions, and single-particle spectral functions
are given in Sec. III B. Section IV presents the corresponding
numerical results. Our main conclusions can be found in
Sec. V.

II. EXTENDED FALICOV-KIMBALL MODEL

The Hamiltonian for the EFKM is written

H = �
k

�̄k
cck

†ck + �
k

�̄k
f fk

† fk + �
i

Uni
cni

f , �1�

where ck
† �ck� and fk

† �fk� are the creation �annihilation� op-
erators in momentum �k� space of spinless c and f electrons,
respectively, and ni

c and ni
f are the corresponding occupation

numbers in real space. The Fourier-transformed fermionic
operators are defined via �k

† = 1
�N

�i�i
†eikRi, where �=c , f and

the �-fermion dispersion is

�̄k
� = �� − t��k − � �2�

with on-site energy ��. In Eq. �2�, � denotes the chemical
potential. In the tight-binding limit, on a D-dimensional hy-
percubic lattice, we have �k=2�d=1

D cos kd. The sign of tctf

determines whether we deal with a direct �tctf �0� or indirect
�tctf �0� band-gap situation. Usually, the c electrons are con-
sidered to be “light” and their hopping integral is taken to be
the unit of energy �tc=1� while the f electrons are “heavy,”
i.e., �tf��1. For tf �0 �dispersionless f band�, the local
f-electron number is strictly conserved.17 The third term in
Hamiltonian �1� represents the Coulomb interaction between
c and f electrons at the same lattice site. Hence, if the c and
f bands are degenerate, �c=� f and tc= tf, the EFKM reduces
to the standard Hubbard model.

In order to address the formation of the EI state in the
EFKM, we look for a nonvanishing excitonic expectation
value 	c†f
, indicating a kind of spontaneous symmetry
breaking due the pairing of c electrons �tc�0� with f holes
�tf �0�. This is quite similar to the problem of electronic
ferroelectricity, where 	c†f
�0 causes electrical polarizabil-
ity without an interband transition driving field, provided the
c and f states have different parity.15,17 Thereby, depending
on the sign of tf �direct or indirect gap�, ferro- or antiferro-
electric phases may exist.

To proceed, we introduce two-particle interaction opera-
tors in momentum space,

ak1k2k3
= ck1

† ck2
fk3

† fk1+k3−k2
�3�

and rewrite the EFKM Hamiltonian �1� in a normal-ordered
form27

H = �
k

�k
c :ck

†ck:+ �
k

�k
f :fk

† fk:− �
k

��:fk
†ck:+ H.c.�

+
U

N
�

k1k2k3

:ak1k2k3
:, �4�

where

� =
U

N
�
k

dk �5�

with dk= 	ck
† fk
, plays the role of the EI order parameter.

Note that choosing the normal-ordered representation of
operators, the symmetry of the Hamiltonian is explicitly
broken, and iterating the self-consistency equation derived
below will readily give �meta�stable solutions.28 In Hamil-

PHAN, BECKER, AND FEHSKE PHYSICAL REVIEW B 81, 205117 �2010�

205117-2



tonian �4�, the on-site energies were shifted by a Hartree
term,

�k
c�f� = �̄k

c�f� + U	nf�c�
 , �6�

where 	n�
= 1
N�k	�k

†�k
 are the particle number densities of
c or f electrons for a system with N lattice sites. In what
follows, we consider the half-filled band case, i.e., we fix the
total electron density n= 	nc
+ 	nf
=1.

III. THEORETICAL APPROACH

A. Projector-based renormalization method

The PRM was recently developed with the aim to diago-
nalize many-particle systems.29 One of the main advantages
of the method is to find broken-symmetry solutions of phase
transitions.30 For example, in Ref. 26 the method was suc-
cessfully applied to the t-J model in order to study supercon-
ducting d-wave solutions for cuprates.

The PRM starts from the decomposition of a given many-
particle Hamiltonian into an “unperturbed” part H0 and into
a “perturbation” H1, where the unperturbed part H0 should
be solvable. Suppose all diagonal matrix elements of H1 be-
tween eigenvectors of H0 vanish, the part H1 accounts for all
transitions between the eigenstates of H0 with nonzero tran-
sition energies. Then, the first goal of the PRM is to trans-
form the initial Hamiltonian into an effective Hamiltonian
H	 which contains no longer transition operators with ener-
gies larger than some chosen cutoff 	. Thereby, the Hamil-
tonian H	 is formally obtained by applying a unitary trans-
formation

H	 = eX	He−X	. �7�

The transformed Hamiltonian H	, which has the same
eigenspectrum as the original Hamiltonian H, can again be
decomposed into two parts

H	 = H0,	 + H1,	. �8�

Due to construction, all matrix elements 	n	�H1,	�m	
 of H1,	
with energy differences �En

	−Em
	 ��	 should vanish, i.e.,

	n	�H1,	�m	
=0, where En
	 and �n	
 are the new renormalized

eigenvalues and eigenstates of H0,	. Note that neither �n	

nor �m	
 have to be low-energy eigenstates of H0,	. To en-
sure hermiticity of H	, the generator X	 of the unitary trans-
formation has to satisfy X	

† =−X	.
A crucial idea for the elimination procedure in the PRM

is to introduce generalized projection operators P	 and
Q	=1−P	. Here P	 is defined by

P	A = �
m,n

�En
	−Em

	 �
	

�n	
	m	�	n	�A�m	
 , �9�

applied on any operator variable A of the Hilbert space of
the system. Note that in expression �9� only states �n	
 and
�m	
 satisfying �En

	−Em
	 �
	 contribute to the transition ma-

trix. Thus, P	 projects on the low-energy transitions of A,
whereas the orthogonal complement Q	 projects on the high-
energy transitions of A. To find an appropriate generator X	

for the unitary transformation from H to H	, the obvious
relation

Q	H	 = 0 �10�

has to be fulfilled.
In the original version of the PRM,23 the elimination pro-

cedure is performed stepwise. Suppose � is the largest tran-
sition energy of the original Hamiltonian H, in the first
elimination step all transitions in an energy shell of width �	
between � and �−�	 will be removed. The subsequent
steps remove, roughly speaking, all transitions in the next
shell of width �	 between �−�	 and �−2�	, and so on.
The unitary transformation for the intermediate step from a
cutoff 	 to the new cutoff 	−�	 reads

H	−�	 = eX	,�	H	e−X	,�	. �11�

Here, the generator X	,�	 has to fulfill the requirement

Q	−�	H	−�	 = 0, �12�

in analogy to Eq. �10�. Thus H	−�	 has no matrix elements
that connect eigenstates of H0,	−�	 with energy differences
larger than 	−�	.

By help of Eqs. �11� and �12�, the generator X	,�	 can
easily be constructed in perturbation theory with respect to
H1,	. Up to first order it reads

X	,�	 =
1

L0,	
Q	−�	H1,	 = Q	−�	X	,�	. �13�

Here, L0,	 is the Liouville superoperator of the unperturbed
Hamiltonian H0,	, which is defined by the commutator of
H0,	 with any operator A on which L0,	 is applied, i.e.,
L0,	A= �H0,	 ,A�. Note, however, that the generator X	,�	

is not completely fixed by Eqs. �11� and �12�. In fact, only
the part Q	−�	X	,�	 is determined by Eq. �12�. The part
P	−�	X	,�	 with only low-energy transitions can still be
chosen arbitrarily and was set identical to zero in Eq. �13�.
Any physical quantities, which is evaluated in the framework
of the PRM, is independent of a particular choice of
P	−�	X	,�	.24 This freedom can be used to derive a continu-
ous version of the method. Thereby, the low excitation part
P	−�	X	,�	 is chosen proportional to �	, which allows to
derive differential equations for the 	 dependence of the pa-
rameter values in the Hamiltonian during the renormalization
procedure. As in the discrete version,23 also in the continuous
version the elimination starts from the original model and
proceeds until 	=0. At this point, all transitions operators
from H1 have been used up and the final Hamiltonian is
diagonal or at least quasidiagonal which allows to evaluate
expectation values. Note that the parameters of the renormal-
ized Hamiltonian depend on the parameter values of the
original model H.

To evaluate expectation values of operators A, formed
with the full Hamiltonian, we have to apply the unitary trans-
formation to A as well,
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	A
 =
Tr Ae−�H

Tr e−�H = 	A�	�
H	
= 	Ã
H̃, �14�

where we define A�	�=eX	Ae−X	, Ã=A�	→0�, and H̃
=H	→0. Thus additional renormalization equations are re-
quired for A�	�.

B. Application to the EFKM

1. Renormalization equations

In order to derive the renormalization equations for the
parameters of the Hamiltonian, we first decompose the origi-
nal Hamiltonian H into two parts

H = H0 + H1, �15�

where

H0 = �
k

�k
c :ck

†ck:+ �
k

�k
f :fk

† fk:+ �
k

��:fk
†ck:+ H.c.�

�16�

and

H1 =
U

N
�

k1k2k3

:ak1k2k3
:. �17�

Note again that the perturbation H1 only contains the fluctu-
ating operator part of the Coulomb repulsion 
U. Following
the ideas of the PRM approach, we make the following an-
satz for the renormalized Hamiltonian H	 after all transitions
with energies larger than 	 are integrated out:

H	 = H0,	 + H1,	 �18�

with

H0,	 = �
k

�k,	
c :ck

†ck:+ �
k

�k,	
f :fk

† fk:+ E	

+ �
k

��k,	:fk
†ck:+ H.c.� , �19�

H1,	 =
1

N
P	 �

k1k2k3

Uk1k2k3,	:ak1k2k3
:. �20�

Here, P	 projects on all low-energy transitions with respect
to the unperturbed Hamiltonian H0,	 which are smaller than
	. Due to renormalization all prefactors in Eqs. �19� and �20�
may now depend on the wave vector k and on the energy
cutoff 	. The quantity E	 is an energy shift which enters
during the renormalization procedure. In order to evaluate
the action of the superoperator P	 on the interaction operator
in H1,	 one has to decompose the fluctuation operators
:ak1k2k3

: into eigenmodes of H0,	. Obviously, the diagonal-
ization of H0,	 requires an additional unitary transformation.
However, for the values of U, used in the numerical eva-
luation below, the mixing parameter �k,	 in Eq. �19� turns
out to be always small compared to the energy difference
��k,	

c −�k,	
f �. This follows from the Hartree shifts of the one-

particle energies in Eq. �6�. Thus, using as approximation
L0,	ck

† =�k
cck

† and L0,	fk
† =�k

f fk
†, we can conclude

H1,	 =
1

N
�

k1k2k3

��	 − ��̃k1k2k3,	��Uk1k2k3,	:ak1k2k3
:, �21�

where

�̃k1k2k3,	 = �k1,	
c − �k2,	

c + �k3,	
f − �k1+k3−k2,	

f �22�

is the approximate excitation energy of :ak1k2k3
:, i.e.,

L0,	:ak1k2k3
: = �̃k1k2k3,	:ak1k2k3

:. �23�

The � function in Eq. �21� ensures that only transitions with
excitation energies smaller than 	 remain in H1,	.

By integrating out all transitions between the cutoff � of
the original model and 	=0, all parameters of the original
model will become renormalized. To find their 	 depen-
dence, we derive renormalization equations for the param-
eters �k,	

c , �k,	
f , �k,	, and Uk1k2k3,	. The initial parameter

values are determined by the original model �	=��,

�k,�
c = �k

c , �k,� = � , �24�

�k,�
f = �k

f , Uk1k2k3,� = U . �25�

Note that the energy shift E	 in H0,	 has no effect on expec-
tation values and will be left out in what follows.

Next we have to construct the generator X	,�	 of transfor-
mation �Eq. �11��. Using relation �23�, the high transition
energy part reads in lowest-order perturbation theory accord-
ing to Eq. �13�,

Q	−�	X	,�	 =
1

N
�

k1k2k3

Uk1k2k3,	

�̃k1k2k3,	

�1 − �k1k2k3,	−�	�

� �k1k2k3,	:ak1k2k3
:, �26�

where we have defined �k1k2k3,	=��	− ��̃k1k2k3,	��. Here the
product of the two � functions assures that only excitations
between 	−�	 and 	 are eliminated by the unitary transfor-
mation �Eq. �11��. As mentioned before, in the present ap-
proach we prefer to use a continuous version of the PRM
approach which is based on the choice of the orthogonal
complement part P	−�	X	,�	 of the generator. Thereby,
P	−�	X	,�	 is chosen proportional to �	, which means that
Q	−�	X	,�	 can be neglected in the limit �	→0.24 With
X	,�	�P	−�	X	,�	, the following operator form for the gen-
erator can be used:

X	,�	 =
�	

N
�

k1k2k3

�̃k1k2k3,	�k1k2k3,	−�	�k1k2k3,	:ak1k2k3
:,

�27�

where the operators are taken over from expression �26�.
Note that the two � functions guarantee that expression �27�
corresponds to the generator part with low-energy excitations
only. For the coefficients �̃k1k2k3,	 we make the following
ansatz:
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�̃k1k2k3,	 =
�̃k1k2k3,	

��	 − ��̃k1k2k3,	��2Uk1k2k3,	, �28�

which is an appropriate choice in the continuous version of
the PRM.24 The constant � in Eq. �28� denotes an energy
constant to ensure that the parameter �̃k1k2k3,	 has the correct
dimension of an inverse energy. At first glance, one might
expect that �̃k1k2k3,	 diverges at 	= ��̃k1k2k3,	�. Instead it van-
ishes exponentially at this point which follows from the
renormalization equation for Uk1k2k3,	, given below.

Our aim is to derive renormalization equations for renor-
malized Hamiltonian. The transformation �Eq. �11�� relates
the Hamiltonian H	 at cutoff 	 to that at the reduced cutoff
	−�	. With Eq. �27� one finds in the limit �	→0,

dH	

d	
= −

1

N
�

k1k2k3

�̃k1k2k3,	�k1k2k3,	�:ak1k2k3
:,H	� . �29�

Note that the evaluation of the commutator also leads to new
operators which are not present in the ansatz �Eq. �18�� for
H	. Therefore an additional factorization has to be used.
Comparison with the generic derivation of Eq. �18� leads to
the following set of coupled renormalization equations which
describe the 	-dependent renormalization of the parameters
of H	:

d�k,	
c

d	
= −

1

N2 �
k1k2

Uk1kk2,	�̃kk1,k1+k2−k,	�1 − 	nk1

c 
�

� �	nk1+k2−k
f 
 − 	nk2

f 
�

−
1

N2 �
k1k2

Ukk1k2,	�̃k1k,k+k2−k1,		nk1

c 


� �	nk+k2−k1

f 
 − 	nk2

f 
� , �30�

d�k,	
f

d	
= −

1

N2 �
k1k2

Uk1k2,k−k1+k2,	�̃k2k1k,		nk−k1+k2

f 


� �	nk1

c 
 − 	nk2

c 
� −
1

N2 �
k1k2

Uk1k2k,	�̃k2k1,k+k1−k2,	

� �1 − 	nk+k1−k2

f 
��	nk1

c 
 − 	nk2

c 
� , �31�

d�k,	

d	
= −

1

N
�
k1

�̃k1kk,	�k1,	�	nk1

f 
 − 	nk1

c 
�

−
1

N2 �
k1k2

�Uk1k2k2,	�̃kk1k1,	dk�1 − 	nk1

c 
�

+ Uk1kk,	�̃kk2k2,	dk1
	nk

c


− Uk1k2k,	��̃k1+k−k2,k1k2,	dk1+k−k2
	nk

f 


+ �̃k2k,k1+k−k2,	dk1
�1 − 	nk1+k−k2

f 
��
 . �32�

Here, we have defined expectation values

	nk
c
 = 	ck

†ck
, 	nk
f 
 = 	fk

† fk
, dk = 	ck
† fk
 , �33�

which are formed with the full Hamiltonian. There is also an
additional renormalization equation for the 	-dependent cou-
pling Uk1k2k,	. It reads

dUk1k2k,	

d	
= �̃k1k2k,	�̃k1k2k,	. �34�

Integrating the whole set of differential equations with the
initial values given by Eq. �25�, the completely renormalized

Hamiltonian H̃ªH	→0=H0,	→0 is obtained

H̃ = �
k

�̃k
c :ck

†ck:+ �
k

�̃k
f :fk

† fk:+ �
k

��̃k:fk
†ck:+ H.c.� ,

�35�

where the quantities with tilde sign denote the parameter
values at 	→0. The final Hamiltonian �35� can be diagonal-
ized by use of a Bogoliubov transformation,31

H̃ = �
k

Ek
c :c̄k

†c̄k:+ �
k

Ek
f : f̄k

† f̄k:+ Ẽ . �36�

Here, c̄k
† and f̄k

† are the new quasiparticle operators

c̄k
† = ukck

† + vkfk
† , �37�

f̄k
† = − vkck

† + ukfk
† , �38�

with

uk
2 =

1

2
�1 + sgn��̃k

f − �̃k
c�

�̃k
f − �̃k

c

Wk
� , �39�

vk
2 =

1

2
�1 − sgn��̃k

f − �̃k
c�

�̃k
f − �̃k

c

Wk
� . �40�

The quasiparticle energies are given by

Ek
c =

�̃k
c + �̃k

f

2
−

sgn��̃k
f − �̃k

c�
2

Wk, �41�

Ek
f =

�̃k
c + �̃k

f

2
+

sgn��̃k
f − �̃k

c�
2

Wk, �42�

where

Wk = ���̃k
c − �̃k

f �2 + 4��̃k�2. �43�

2. Expectation values

The expectation values �Eq. �33�� in the set of renormal-
ization equations have to be evaluated self-consistently. Ac-
cording to relation �14�, thereby the same unitary transfor-
mation as for the Hamiltonian has to be used. For instance,
following Eq. �14�, the expectation value 	nk

c
 can be ex-
pressed by
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	nk
c
 = 	ck

†ck
 = 	ck
†�	 → 0�ck�	 → 0�
H̃, �44�

where the average on the right-hand side �rhs� is formed with

the fully renormalized Hamiltonian H̃, and ck
†�	� is given by

ck
†�	�=eX	ck

†e−X	. For the transformed operator we use as
ansatz

:ck
†�	�: = xk,	:ck

†:+
1

N
�
k1k2

yk1kk2,	:ck1

† fk2

† fk1+k2−k: �45�

with a coherent part 
xk,	 and an incoherent part 
yk1kk2,	.
The operator structure in Eq. �45� is again taken over from
the lowest-order expansion of the unitary transformation. For
the 	-dependent coefficients xk,	 and yk1kk2,	 new renormal-
ization equations can be derived. They read

dxk,	

d	
= −

1

N2 �
k1k2

yk1kk2,	�̃kk1,k1+k2−k,	��1 − 	nk1

c 
�

� �	nk1+k2−k
f 
 − 	nk2

f 
� + 	nk2

f 
�1 − 	nk1+k2−k
f 
�� ,

�46�

dyk1kk2,	

d	
= − xk,	�̃k1kk2,	. �47�

Integration between � �where xk,�=1 and yk1kk2,�=0� and
	=0 leads to

:ck
†�	 → 0�: = x̃k:ck

†:+
1

N
�
k1k2

ỹk1kk2
:ck1

† fk2

† fk1+k2−k: , �48�

from which 	nk
c
 is found

	nk
c
 = �x̃k�2	ck

†ck
H̃ +
1

N2 �
k1k2

�ỹk1kk2
�2	ck1

† ck1

H̃	fk2

† fk2

H̃

� �1 − 	fk1+k2−k
† fk1+k2−k
H̃� . �49�

The remaining expectation values 	nk
f 
 and dk can be

evaluated by using an equivalent ansatz for :fk
†�	�:,

: fk
†�	�: = xk,	� :fk

†:+
1

N
�
k1k2

yk1k2,k−k1+k2,	� :ck1

† ck2
fk−k1+k2

† :,

�50�

consisting again of a coherent and an incoherent part with
	-dependent coefficients xk,	� and yk1k2,k−k1+k2,	� , respectively.
Their renormalization equations read

dxk,	�

d	
= −

1

N2 �
k1k2

yk1k2,k−k1+k2,	� �̃k2k1k,	�	nk−k1+k2

f 


� �	nk1

c 
 − 	nk2

c 
� + 	nk2

c 
�1 − 	nk1

c 
�� , �51�

dyk1k2,k−k1+k2,	�

d	
= − xk,	� �̃k1k2,k−k1+k2,	, �52�

where the initial values are xk,�� =1 and yk1k2,k−k1+k2,�� =0.
Similar to Eq. �49�, we are led to

	nk
f 
 = �x̃k��2	fk

† fk
H̃ +
1

N2 �
k1k2

�ỹk1k2,k−k1+k2
� �2	fk−k1+k1

† fk−k1+k2

H̃

� 	ck1

† ck1

H̃�1 − 	ck2

† ck2

H̃� , �53�

dk = x̃kx̃k�	fk
†ck
H̃ −

1

N2 �
k1k2

ỹk1k2,k−k1+k2
� ỹk1k,k−k1+k2

	ck1

† ck1

H̃

� 	fk2

† ck2

H̃	fk−k1+k2

† fk−k1+k2

H̃. �54�

In the last step, one has to evaluate the expectation values on
the rhs of Eqs. �49�, �53�, and �54�, which are formed with

H̃. Using the diagonal form of H̃ in Eq. �36� one easily
finds31

	ck
†ck
H̃ = uk

2 f�Ek
c� + vk

2 f�Ek
f � , �55�

	fk
† fk
H̃ = vk

2 f�Ek
c� + uk

2 f�Ek
f � , �56�

	fk
†ck
H̃ = − �f�Ek

c� − f�Ek
f �� sgn��̃k

f − �̃k
c�

�̃k

Wk
, �57�

where f�Ek
�� is the Fermi function.

C. Spectral functions

Let us consider the one-particle spectral function for c
electrons

Ac�k,�� = −
1

�
Im Gc�k,�� , �58�

where Gc�k ,�� is the Fourier transform of the retarded
Green’s function

Gc�k,�� = 		ck;ck
†

�� + i0+� . �59�

Using again relation �14�, the Green’s function can be rewrit-
ten

		ck;ck
†

��� = 		ck�	 → 0�;ck

†�	 → 0�

H̃��� , �60�

where the expectation value on the rhs is again formed with

H̃. Using expression �48� for ck
†�	→0�, we are immediately

led the following result for the c-electron spectral function:

Ac�k,�� = �x̃k�2�uk
2��� − Ek

c� + vk
2��� − Ek

f ��

+
1

N2 �
k1k2

�ỹk1kk2
�2��� − �Ek1

c − Ek1+k2−k
f + Ek2

f ��

� �	ck1

† ck1

H̃�	fk2

† fk2

H̃ − 	fk1+k2−k

† fk1+k2−k
H̃�

+ 	fk1+k2−k
† fk1+k2−k
H̃�1 − 	fk2

† fk2

H̃�
 . �61�

Note that we have restricted ourselves to the leading order in
the EI order parameter. In the same way, we can also calcu-
late the spectral function Af�k ,�� for the f electrons. The
final result reads
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Af�k,�� = �x̃k��2�vk
2��� − Ek

c� + uk
2��� − Ek

f ��

+
1

N2 �
k1k2

�ỹk1k2,k−k1+k2
� �2��� − �Ek−k1+k2

f − Ek2

c

+ Ek1

c ���	ck1

† ck1

H̃�1 − 	ck2

† ck2

H̃� + �	ck2

† ck2

H̃

− 	ck1

† ck1

H̃��1 − 	fk−k1+k2

† fk−k1+k2

H̃�� . �62�

IV. NUMERICAL RESULTS AND DISCUSSION

We now will evaluate the analytical expressions of the
PRM approach outlined so far. Of course, the set of Eqs.
�49�, �53�, and �54� has to be solved numerically. To this end,
we choose some initial values for 	nk

c
, 	nk
f 
, and dk �assum-

ing 	ck
† fk
= 	fk

†ck
�, and determine the renormalization of the
Hamiltonian and all operators, by solving the differential
Eqs. �30�–�32�, �47�, and �52�. Performing the limit 	→0, all

model parameters will be renormalized. Then, using H̃, the
new expectation values �Eqs. �55�–�57�� are calculated and
the renormalization process of the Hamiltonian is restarted.
Convergence is assumed to be achieved if all quantities are
determined with a relative error less than 10−5. The dynami-
cal correlation functions �Eqs. �61� and �62�� are evaluated
using a Gaussian broadening in energy space of width 0.06.
Because of the large number of differential equations that
have to be solved, we confine ourselves, in what follows, to
the investigation of the 1D case and limit the number of
lattice sites �k points� to N=60.

A. Ground-state properties

1. Order parameter

We begin by scanning the parameter space of the 1D
EFKM in order to detect an EI ground state. The T=0 quan-
tum phase diagram of the 1D EFKM has been previously
explored by the CPMC technique,32 after mapping the
EFKM—rewritten in pseudospin variables—into a negative
U asymmetric Hubbard model with the Zeeman term re-
placed by a chemical potential.14 Thereby, in terms of our
original language, a transition from a mixed-valence regime
to a nonmixed valence regime was observed, which corre-
sponds to the transition from the EI to a band insulator. In
1D, the EI phase is characterized by critical excitonic corre-
lations. Surprisingly the topology of the 1D phase diagram is
the same as for the 2D and 3D cases, which were studied by
CPMC �Ref. 14� �2D� and Hartree-Fock �Refs. 16 and 17�
�2D and 3D� approaches. To benchmark the reliability of the
PRM, we have compared the 1D PRM EI band-insulator
transition points with those obtained by the rather unbiased
CPMC method and found excellent agreement. For example,
we obtain �c,PRM

f =−1.81��c,CPMC
f =−1.80 for tf =−0.3,

U=1 �cf. Fig. 1 from Ref. 14�.
Figures 2 and 3 show the onset of the EI phase for differ-

ent values of U �tf =−0.3 fixed� and tf �U=0.8 fixed�, respec-
tively, as the f-electron level is varied �see main panels�.
Obviously, the EI phase emerges above a critical Coulomb
attraction strength Uc1 �cf. inset Fig. 2�, provided that c and

f bands overlap. Moving up the � f level, the top of the f
band reaches the bottom of the c band at a critical value �c

f .
Then some f electrons can be transferred into c-band elec-
trons and exciton bound states of f-band holes and c-band
electrons may form if the Coulomb attraction is sufficiently
strong. Recent Hartree-Fock- and slave-boson-theory-based
studies17,18,21 yield a second, upper critical value of the Cou-
lomb attraction Uc2, such that the EI phase is confined in
between Uc1 and Uc2. The PRM data, produced up to now,
will rather not confirm this controversial finding �see inset
Fig. 2�. However in the large-U limit, the numerical calcula-
tions are ill conditioned and tedious, especially in 1D. So the
question whether Uc2=� remains open. That the appearance
of the EI phase is intimately connected with the buildup of
f-c electron coherence and a nonintegral f-electron valence
is demonstrated by the inset of Fig. 3, depicting 	nf
 �cf. also
the discussion of Fig. 5 below�.

The physical picture developed so far does not change if
the f-electron band approaches the c-electron band from

-3 -2.5 -2 -1.5 -1 -0.5 0
εf

-0.15

-0.1

-0.05

0

∆

U=0.6

U=0.8

U=1.0

0 0.4 0.8U

-0.1

0

∆

εf= -1.7

Uc1

FIG. 2. �Color online� EI order parameter, �, in the 1D EFKM.
The f-electron transfer integral is fixed to be tf =−0.3 �all energies
are given in units of tc�. In what follows, we assume �c=0 without
loss of generality. The main panel gives � as a function of the
position of the f-electron level, � f, for different values of U while
the inset shows the variation of � with U at � f =−1.7. The calcula-
tions were performed at basically zero temperature, T=10−3.

-3 -2.5 -2 -1.5 -1 -0.5 0
εf

-0.12

-0.08

-0.04

0

∆

t
f
=-0.1

t
f
=-0.3

t
f
=-0.5

-3 -2 -1 0εf

0.6

0.9

<
nf >

FIG. 3. �Color online� EI order parameter in the 1D EFKM. The
main panel gives � as a function of the position of the f-electron
level for different tf at U=0.8. The inset shows the corresponding
variation of the mean f-electron number.
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above. That is our results are one and the same changing the
sign of � f. We note that in a rather small region around � f

=0 �symmetric band case�, a charge-density-wave state is
assumed to be the true ground state, i.e., the EI phase be-
comes metastable. Focusing on the characterization of the EI
phase we will not address this issue here.

2. Band renormalization

Next we investigate the renormalization of the 1D band
structure. Figure 4 displays the k dependence of the quasi-
particle energies Ek

� in the EI phase, where open and filled
symbols correspond to bands having predominantly c- and
f-electron character, respectively. There are two features of
importance. First, the band structure is clearly gapful in the
EI phase. Hence, for the half-filled band case, the system is
insulating. The gap originates from c-f electron hybridiza-
tion, induced by the attractive Coulomb interaction. Second,
the lower and upper quasiparticle bands are narrowed as a
result of the electronic correlations. While the maximum of
the lower �at T=0 completely occupied� band is displaced to
larger k values as U increases, the minimum of the upper �at
T=0 empty� band moves to smaller k, accompanied by a
flattening of the “f band” near k=0. At very large U �not
depicted�, the gap is kept �but different in nature� because of
the extreme Hartree shift, leading to a c-f band splitting.
Except of contributions from the band narrowing, the Hartree
shift to the quasiparticle energies is roughly given by the sum
of �c−� f and U�	nf
− 	nc
� �compare Eqs. �6�, �41�, and
�42��.

3. Momentum distribution function

Another quantity of interest is the occupation number of
fermionic states carrying momentum k. For free fermions, at
T=0, all states up to the Fermi energy, EF, are occupied so
that the momentum distribution function, n�k�= 	nk
, has a
discontinuity at the corresponding Fermi momentum, kF,

where n�k� jumps from one to zero. In an interacting Fermi
liquid there is still a discontinuity but the jump is less than
one. In 1D, normally Luttinger-liquid behavior emerges, with
an essential power-law singularity at kF. For the insulating
state, however, n�k� is given by a smooth curve. This holds,
e.g., for the charge-density-wave ground states of 1D t-V and
Holstein-type models,33 and should also be valid for the
EI phase in the 1D EFKM. Indeed, the momentum distribu-
tion functions of c and f electrons, n��k�, depicted in Fig. 5
confirm this picture. We see that nf�k��nc�k�� monotonously
increases �decreases� as k varies from k=0 to k=�. As ex-
pected, the drop �upturn� near “kF” softens at larger interac-
tions strengths.

We have also included in Fig. 5 the variation in dk
= 	fk

†ck
. This expectation value enters into the equation for
the order parameter �Eq. �5��. In some sense, it can be taken
as a measure of the range in k space, where c electrons and f
holes are involved in the exciton formation and condensation
process. Having a U-driven BCS-BEC crossover scenario in
the EI phase of the EFKM in mind,5,21 the broadening of the
distribution of dk with increasing U might indicate the con-
densation of a more local two-body BEC-like bound state out
of a BCS-type Cooper-pair state. Note that in the BEC-like
state the Fermi surface plays no role.

B. Spectral properties

In this section, we present first results for the PE spectra
in the EI phase of the EFKM. The calculated single-particle
spectral functions, associated with the emission �PE� or in-
jection �inverse PE� of an electron with wave vector k, di-
rectly measure the occupied and unoccupied densities of
single-particle states, and therefore are well suited to inves-
tigate pairing gaps as well. Note that the ARPES spectral
functions

AARPES
� �k,�� =

1

2�
�

−�

+�

	�k
†�t��k
e−i�tdt =

1

1 + e��A��k,��

�63�

fulfill at T=0 the frequency sum rule

-2

-1

0

1

2

3

4
E

kc ,E
kf

0 0.2 0.4 0.6 0.8 1
k/π

U=0.6
U=0.8
U=1.0
U=1.2

U=0.0

FIG. 4. �Color online� Renormalized quasiparticle band disper-
sion of c electrons �Ek

c, open symbols� and f electrons �Ek
f , filled

symbols� in the EI phase of the 1D EFKM for different values of
U. Again the “bare” band structure is parameterized by �c=0,
� f =−1.0, and tf =−0.3 �dot-dashed and solid lines�. Note that the
scale of the ordinate is shifted in order to fix the Fermi energy at
zero energy.
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FIG. 5. �Color online� Momentum distribution functions 	nk
c


= 	ck
†ck
 �black solid lines� and 	nk

f
= 	fk
†fk
 �blue dashed-dotted

lines� for the same model parameters as used in Fig. 4. The red
dashed lines show the corresponding “order-parameter” functions
dk, see Eq. �5�.
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�
−�

0

A��k,��d� = 	nk
�
 , �64�

where 	nk
�
 is given by Eqs. �49� and �53� �cf. Fig. 5�.

Figure 6 displays the zero-temperature, wave-vector, and
energy resolved single-particle spectral functions, A��k ,��
�see Eqs. �61� and �62��, for a bare band structure parameter-
ized by � f =−1��c=0� and tf =−0.3�tc=1�. For weak Cou-
lomb attraction, U=0.2 �upper panels� we are still in the
semimetallic phase, and consistently Ac�k ,�� and Af�k ,��
follow the nearly unrenormalized c- and f-band dispersions,
respectively. Concomitantly, we find a more or less uniform
distribution of the spectral weight and negligible incoherent
contributions �see right-hand panels for Ac�k ,�� and
Af�k ,���. When entering the EI phase by increasing U to
U=0.6, a gap feature develops at the Fermi energy �Fermi
momentum� but away from that the spectra still show the

main characteristics of the semimetallic state �cf. both
middle panels�. At a still larger value U=1.2, the gap broad-
ens. Most notably, however, is a significant redistribution of
the spectral weight from the coherent to the incoherent part
of A��k ,��, with pronounced absorption maxima at k=0,�.
Of particular importance is a considerable admixture of
c-electron contributions to the f-electron spectrum in an in-
terval between k=0 and k�kF. The resulting double peak
structure around the Fermi level can be considered as an
almost k-independent bound object of c electrons and f
holes.

If we change the location of the f band by lowering the
position of the f-electron level, we can achieve that the band
structure becomes gapful due to the Hartree shift �Eq. �6��,
even for moderate values of U �assuming ��0�. For ex-
ample, at � f =−1.7 and tf =−0.3, a c-f band splitting �positive
Hartree gap �H, cf. Fig. 1� occurs already at UH�0.94. Such
a situation comes closer to the Tm�Se,Te� system.9 Figure 7
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FIG. 6. �Color online� Wave-number resolved photoemission spectra of the 1D half-filled EFKM. The c-electron �left-hand panels� and
f-electron �right-hand panels� single-particle spectral functions were calculated for several characteristic values of U at � f =−1.0, tf =−0.3,
and T=10−3. The left panels show in each case the total spectra, A��k ,��, whereas the right panels give the “incoherent” contributions only
�second term in Eqs. �61� and �62��. The vertical dot-dashed lines mark the chemical potential.
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FIG. 7. �Color online� Single-particle spectral functions for c �left-hand panels� and f electrons �right-hand panels� in 1D half-filled
EFKM with � f =−1.7, tf =−0.3, and T=10−3. As in Fig. 6, the total spectra are contrasted to the incoherent contributions.
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shows the PE spectra calculated for these parameter values.
Compared to the case � f =−1, for U=0.6 the gap is clearly a
bit more shaped but the main features of the spectrum stay
the same. Here we are in the BCS regime, where pairing
fluctuations are expected to be small. For U=1.2�UH, we
enter the BEC regime, where preformed pairs acquire quan-
tum coherence �many-body character� during the condensa-
tion process. Since ��0 the gap persists. The distinct inco-
herent contributions, showing up in the A��k ,�� spectra at
high energies, are related to the dissociation of two-particle
bound states �excitons�.

To visualize more clearly the spectral weight and line
shape of the various absorption signals, we provide in Fig. 8
a color-map intensity plot of the single-particle spectral func-
tions depicted in Fig. 7. Particularly from the Af�k ,�� data, it
appears that the BCS-BEC crossover is again marked by a
notable admixture of c-electronlike contributions leading to
new peak-line structures in the spectrum �cf. right-hand pan-
els of Fig. 8�.

V. CONCLUSIONS

To summarize, we adapted a continuous version of
the projective renormalization method to the extended
Falicov-Kimball model to examine the possible existence of
a collective excitonic insulator phase at the semimetal-
semiconductor transition. Thereby the PRM approach allows
us to derive analytical expressions for the EI order parameter
and various other physical quantities characterizing the
ground-state and spectral properties of the model. The self-
consistent evaluation of the renormalization equations yields
a stable EI solution for the one-dimensional EFKM, at half

filling and zero temperature. It therefore confirms previous,
straight numerical data by constrained path-integral Monte
Carlo. In particular, the phase boundary between the exci-
tonic and band insulator agrees even quantitatively with the
CPMC results. Thus, increasing the Coulomb attraction be-
tween c-band electrons and f-band holes, the appearance of a
semimetal-EI transition seems to be settled for the 1D
EFKM.

Moreover, we present results for the single-particle c- and
f-electron spectral functions of the EFKM. The calculated
photoemission spectra are in evidence of a BCS-BEC cross-
over of the excitonic condensate, triggered by the Coulomb
interaction. Thereby the character of the electron-hole pairs
changes from the many-body bound state associated with the
Cooper-type instability �weak-to-intermediate coupling BCS
side� to the two-body �tightly bound exciton� bound state
�intermediate-to-strong coupling BEC side�, where Fermi-
surface effects are negligible. Hallmark of the BCS-BEC
crossover in the quasiparticle spectra is a substantial spectral
weight transfer from the coherent to the incoherent part of
the spectrum. A more thorough analysis of the pairing fluc-
tuations, which are expected to be strongly enhanced in the
BCS-BEC transition region, e.g., by calculating the dynami-
cal pair susceptibilities within the PRM approach, would be
a worthwhile goal of forthcoming studies.
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FIG. 8. �Color online� Intensity plots of the
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